SYRIAN PRIVATE UNIVERSITY

Electric Circuits I

 Dr. Eng. Hassan M. AfmadHassan.Ahmad@spu.edu.sy, istamo48@mail.ru

Chapter 4 Circuit Theorems

4.1 Motivation
4.2 Linearity Property
4.3 Superposition
4.4 Source Transformation
4.5 Thevenin's Theorem
4.6 Norton's Theorem
4.7 Maximum Power Transfer

4.1 Motivation

If you are given the following circuit, are there any other alternative(s) to determine the voltage across 2Ω resistor?

What are they? And how?
Can you work it out by inspection?

4.2 Linearity Property

A linear circuit is one whose output (i) is linearly related (or directly proportional) to its input $\left(v_{s}\right)$, as shown in Fig.

Ohm's law relates the input i to the output v,

$$
v=i R \Leftrightarrow i=\frac{1}{R} v
$$

Example 4.1.

By assume $I_{\mathrm{o}}=1 \mathrm{~A}$, use linearity to find the actual value of I_{o} in the circuit shown in Fig.

Solution:
If $I_{\mathrm{o}}=1 \mathrm{~A}$, then

$$
V_{1}=(3+5) I_{o}=8 \mathrm{~V} \text { and } I_{1}=V_{1} / 4=2 \mathrm{~A} .
$$

Applying KCL at node 1 gives

$$
I_{2}=I_{1}+I_{o}=3 \mathrm{~A} \Rightarrow V_{2}=V_{1}+2 I_{2}=8+6=14 \mathrm{~V}, \quad I_{3}=\frac{V_{2}}{7}=2 \mathrm{~A}
$$

Applying KCL at node 2 gives $I_{4}=I_{3}+I_{2}=5 \mathrm{~A}$
Therefore, $I_{\mathrm{s}}=I_{4}=5 \mathrm{~A}$.
This shows that assuming $I_{\mathrm{o}}=1$ gives $I_{\mathrm{s}}=5 \mathrm{~A}$, the actual source current of 15 A will give $I_{\mathrm{o}}=3 \mathrm{~A}$ as the actual value.

Example 4.2.

For the circuit in Fig., find I_{o} when $v_{\mathrm{s}}=12 \mathrm{~V}$ and $v_{\mathrm{s}}=24 \mathrm{~V}$.
Solution:
For loop 1,

$$
\begin{align*}
6 i_{1}+2 i_{1}+4\left(i_{1}-i_{2}\right)+v_{s} & =0 \\
\Rightarrow \quad 12 i_{1}-4 i_{2}+v_{s} & =0 \tag{1}
\end{align*}
$$

For loop 2,

$$
\begin{align*}
& -v_{s}+4\left(i_{2}-i_{1}\right)+8 i_{2}+4 i_{2}-3 v_{v}=0 \\
& \Rightarrow \quad-4 i_{1}+16 i_{2}-3 v_{x}-v_{2}=0 \tag{2}
\end{align*}
$$

But $v_{\mathrm{x}}=2 i_{1} \rightarrow$ Equation (2) becomes $-10 i_{1}+16 i_{2}-v_{s}=0$
By solving Eqs. (1) and (3), we have $i_{1}=-6 i_{2}, \quad i_{2}=\frac{v_{s}}{76}$
When, $v_{s}=12 \mathrm{~V} \Rightarrow I_{o}=i_{2}=\frac{12}{76} \mathrm{~A} ; \quad v_{s}=24 \mathrm{~V} \Rightarrow I_{o}=i_{2}=\frac{24}{76} \mathrm{~A}$
showing that when the source value is doubled, I_{o} doubles.

4.3 Superposition Theorem

\square It states that the voltage across (or current through) an element in a linear circuit is the algebraic sum of the voltage across (or currents through) that element due to each independent source acting alone.
\square The principle of superposition helps us to analyze a linear circuit with more than one independent source by calculating the contribution of each independent source separately.

For example, we consider the effects of 8 A and 20 V one by one, then add the two effects together for final v_{0}.

Steps to apply superposition principle

1. Turn off all independent sources except one source. Find the output (voltage or current) due to that active source using nodal or mesh analysis.
2. Repeat step 1 for each of the other independent sources.
3. Find the total contribution (المساهـة) by adding algebraically all the contributions due to the independent sources.

Two things have to be keep in mind:

1. When we say turn off all other independent sources:
$>$ Independent voltage sources are replaced by 0 V (short circuit) and
> Independent current sources are replaced by 0 A (open circuit).
2. Dependent soûces are left intact (نُترّك سليمة) because they are controlled by circuit variables.

Example 4.3.

Use the superposition theorem to find v in the circuit of Fig.

Solution:

Let v_{1} and v_{2} are the contributions due to the $6-\mathrm{V}$ voltage source and the 3 -A current source, respectively. Hence,

$$
v=v_{1}+v_{2}
$$

- To obtain v_{1} we set the current source to zero, Fig.(a). Applying KVL to the loop in Fig.(a) gives

$$
12 i_{1}-6=0 \Rightarrow i_{1}=0.5 \mathrm{~A} \Rightarrow v_{1}=4 i_{1}=2 \mathrm{~V}
$$

(a)

(b)

$$
i_{3}=\frac{8}{4+8}(3)=2 \mathrm{~A} \Rightarrow v_{2}=4 i_{3}=8 \mathrm{~V}
$$

- Finally,

$$
v=v_{1}+v_{2}=2+8=10 \mathrm{~V}
$$

Example 4.5.

Find i_{0} in the circuit of Fig. using superposition. Solution:
Let i_{o}^{\prime} and $i_{o}^{\prime \prime}$ are due to the 4-A current source and $20-\mathrm{V}$ voltage source respectively. Hence,

To obtain i_{o}^{\prime}, see Fig.(a),

$$
\begin{equation*}
i_{o}=i_{o}^{\prime}+i_{o}^{\prime \prime} \tag{1}
\end{equation*}
$$

For loop 1, $\quad i_{1}=4 \mathrm{~A}$
For loop 2, $\quad-3 i_{1}+6 i_{2}-1 i_{3}-5 i_{o}^{\prime}=0$
For loop 3, $-5 i_{1}-1 i_{2}+10 i_{3}+5 i_{o}^{\prime}=0$
But at node $0, \quad i_{3}=i_{1}-i_{o}=4-i_{o}$ (5)
Substituting Eqs. (2) and (5) into Eqs. (3) and (4) gives

$$
\begin{align*}
3 i_{2}-2 i_{o} & =8 \tag{6}\\
i_{2}+5 i_{o} & =20 \tag{7}
\end{align*}
$$

By solving Eqs. (6) and (7), we have

$$
i_{o}^{\prime}=\frac{52}{17} \mathrm{~A}
$$

To obtain $i_{o}^{\prime \prime}$, see Fig.(b).
For loop 4, KVL gives $6 i_{4}-i_{5}-5 i_{o}^{\prime \prime}=0$
For loop 5, $\quad-i_{4}+10 i_{5}-20+5 i_{o}^{\prime \prime}=0$
But $i_{5}=-i_{o}^{\prime \prime}$. Substituting this in Eqs. (9) and (10) gives

$$
\begin{array}{r}
6 i_{4}-4 i_{o}^{\prime \prime}=0 \\
i_{4}+5 i_{o}^{\prime}=-20 \tag{12}
\end{array}
$$

By solving Eqs. (11) and (12), we have:

$$
i_{o}^{\prime \prime}=-\frac{60}{17} \mathrm{~A}
$$

20 V
(b)

Finally,

$$
i_{o}=i_{o}^{\prime}+i_{o}^{\prime \prime}=\frac{52}{17} \frac{60}{17}=-\frac{8}{17}=-0.4706 \mathrm{~A}
$$

4.4 Source Transformation

\square Source transformation is another tool for simplifying circuits. Basic to these tools is the concept of equivalence.

DAn equivalent circuit is one whose $v-i$ characteristics are identical with the original circuit.

IIt is the process of replacing a voltage source v_{S} in series with a resistor R by a current source i_{S} in parallel with a resistor R, or vice versa.
\square Source transformation requires that $\quad v_{s}=i_{s} R \quad$ or $\quad i_{s}=\frac{v_{s}}{R}$

Note from Figures:

- The arrow of the current source is directed toward the positive terminal of the voltage source.

Transformation of independent sources

$$
v_{s}=i_{s} R \quad \text { or } \quad i_{s}=\frac{v_{s}}{R}
$$

Note from eq.

- The source transformation is not possible when $\mathrm{R}=0$ for voltage source and $\mathrm{R}=\infty$ for current source.

Example 4.6. Use source transformation to find v_{0} in the circuit of Fig.

Solution:

- We first transform the current and voltage sources to obtain the circuit in Fig.(a).
- Combining the $4-\Omega$ and $2-\Omega$ resistors in series and transforming the $12-\mathrm{V}$ voltage source gives us Fig.(b).
- We now combine the $3-\Omega$ and $6-\Omega$ resistors in parallel to get $2-\Omega$.
- We also combine the $2-\mathrm{A}$ and 4 - A current sources to get a 2-A source.
- Thus, by repeatedly applying source transformations, we obtain the circuit in Fig.(c).
- We use current division in Fig.(c) to get

$$
i=\frac{2}{2+8}(2)=0.4 \mathrm{~A} \Rightarrow v_{o}=8 i=8(0.4)=3.2 \mathrm{~V}
$$

- Alternatively, since the $8-\Omega$ and $2-\Omega$ and resistors in Fig.(c) are in parallel, they have the same voltage across them. Hence,

$$
V_{0}=(8 \| 2)(2 \mathrm{~A})=\frac{8 \times 2}{8+2}(2)=3.2 \mathrm{~V}
$$

(b)

(c)

4.5 Thevenin's Theorem

Thevenin's theorem states that a linear two-terminal circuit, Fig.(a), can be replaced by an equivalent circuit, Fig.(b), consisting of a voltage source V_{Th} in series with a resistor R_{Th},
where

- V_{Th} is the open-circuit voltage at the terminals.
- R_{Th} is the input or equivalent resistance at the terminals when the independent sources are turned off.

(a)

Our major concern right now is how to find the Thevenin equivalent voltage V_{Th} and resistance R_{Th}.

$V_{\text {Th }}$

- By removing the load, the terminals are made opencircuited, then no current flows, so that the open-circuit voltage across the terminals, Fig.(a) must be equal to the voltage source in Fig. (b), (see previous slide).
- Thus, V_{Th} is the open-circuit voltage across the terminals, Fig.(a); that is,

$$
V_{\mathrm{Th}}=v_{\mathrm{oc}}
$$

$\boldsymbol{R}_{\text {Th }}$

- Again, with the load disconnected and terminals $a-b$ open-circuited, we turn off all independent sources.
- The input resistance (or equivalent resistance) of the dead circuit at the terminals $a-b$ must be equal to R_{Th}, Fig.(b), that is,

$$
R_{\mathrm{Th}}=R_{\mathrm{in}}=R_{\mathrm{eq}}
$$

NOTE.
If the network has dependent sources, we turn of f all independent sources and leave the dependent source alone. We may insert a voltage $\left(v_{0}\right)$ or current source $\left(i_{0}\right)$ at terminals a-b as shown in Fig.

23-Sep-18
Dr. Eng. Hassan Ahmad

- A linear circuit with a variable load can be replaced by the Thevenin equivalent, exclusive of the load.
- The equivalent network behaves the same way externally as the original circuit.

$$
\begin{aligned}
I_{L} & =\frac{V_{\mathrm{Th}}}{R_{\mathrm{Th}}+R_{L}} \\
V_{L} & =R_{L} I_{L}=\frac{R_{L}}{R_{\mathrm{Th}}+R_{L}} V_{\mathrm{Th}}
\end{aligned}
$$

(b)

Example 4.7.

Find the Thevenin equivalent circuit of the circuit shown in Fig, to the left of the terminals $a-b$. Then find the current through $R_{L}=6,16 \Omega$.

Solution:

$\boldsymbol{R}_{\text {Th }}$

- We find by turning off the $32-\mathrm{V}$ voltage source (replacing it with a short circuit) and the 2-A current source (replacing it with an open circuit). The circuit becomes what is shown in Fig.(a).
- Thus,

$$
R_{\mathrm{Th}}=(4 \| 12)+1=\frac{4 \times 12}{4+12}+1=4 \Omega
$$

$V_{\text {Th }}$

- To find consider the circuit in Fig.(b).
- Applying mesh analysis to the two loops, we obtain

$$
i_{2}=-2 \mathrm{~A}
$$

(b)

$$
-32+4 i_{1}+12\left(i_{1}-i_{2}\right)=0
$$

23-Sep-18

$$
I_{L}=\frac{V_{\mathrm{Th}}}{R_{\mathrm{Th}}+R_{L}}=\frac{30}{4+R_{L}} \Rightarrow I_{L_{(6 \Omega)}}=3 \mathrm{~A}, \quad I_{L_{(16 \Omega)}}=1.5 \mathrm{~A}
$$

(c)

Dr. Eng. Hassan Ahmad

Example 4.8.

Find the Thevenin equivalent of the circuit in Fig. at terminals $a-b$.

Solution:

To find $\boldsymbol{R}_{\text {Th }}$, we excite the network with a voltage source $v_{0}=1 \mathrm{~V}$ connected to the terminals as indicated in Fig. (a).
Our goal is to find the current i_{o} through the terminals, and then obtain $R_{\mathrm{Th}}=v_{\mathrm{o}} / i_{\mathrm{o}}=1 / i_{\mathrm{o}}$.

(Alternatively, we may insert a 1-A current source, find the corresponding voltage v_{o}, and obtain $R_{\text {Th }}=v_{\mathrm{o}} / 1$).
For loop 1, $\quad-2 v_{x}+2\left(i_{1}-i_{2}\right)=0 \Rightarrow v_{x}=i_{1}-i_{2}$
But

$$
-4 i_{2}=v_{x}=i_{1}-i_{2}
$$

hence,

$$
i_{1}=-3 i_{2} \quad(1)
$$

For loop 2 and $3,4 i_{2}+2\left(i_{2}-i_{1}\right)+6\left(i_{2}-i_{3}\right)=0$

$$
\begin{equation*}
6\left(i_{3}-i_{2}\right)+2 i_{3}+1=0 \tag{2}
\end{equation*}
$$

Solving these equations gives $i_{3}=-\frac{1}{6} \mathrm{~A}$

(a)

But $i_{0}=-i_{3}=1 / 6 \mathrm{~A}$. Hence, $R_{\mathrm{Th}}=1 \mathrm{~V} / i_{o}=6 \Omega$.

To get $\boldsymbol{V}_{\text {Th }}$, we find v_{oc} in the circuit of Fig.(b). Applying mesh analysis, we get

$$
\text { For loop 1, } \quad i_{1}=5
$$

For loop 2,

$$
\begin{equation*}
-2 v_{x}+2\left(i_{3}-i_{2}\right)=0 \Rightarrow v_{x}=i_{3}-i_{2} \tag{5}
\end{equation*}
$$

For loop 3, $4\left(i_{2}-i_{1}\right)+2\left(i_{2}-i_{3}\right)+6 i_{2}=0$

$$
\begin{equation*}
\Rightarrow \quad 12 i_{2}-4 i_{1}-2 i_{3}=0 \tag{6}
\end{equation*}
$$

(b)

But $\quad 4\left(i_{1}-i_{2}\right)=v_{x} \quad$ (7)
Solving the equations (5), (6) and (7) we have $i_{2}=\frac{10}{3} \mathrm{~A}$
Hence,

$$
V_{\mathrm{Th}}=v_{o c}=6 i_{2}=20 \mathrm{~V}
$$

The Thevenin equivalent is as shown in Fig.

4.6 Norton's Theorem

- Norton's theorem states that a linear two-terminal circuit can be replaced by an equivalent circuit of a current source \boldsymbol{I}_{N} in parallel with a resistor \boldsymbol{R}_{N},
where
- \boldsymbol{I}_{N} is the short circuit current $\left(i_{\mathrm{sc}}\right)$ through the terminals.
(a)
- \boldsymbol{R}_{N} is the input or equivalent resistance at the terminals when the independent sources are turned off.
- Thevenin and Norton resistances are equal; that is,

$$
R_{N}=R_{\mathrm{Th}}
$$

- The Thevenin's and Norton equivalent circuits are related by a source transformation; that is,

$$
I_{N}=\frac{V_{\mathrm{Th}}}{R_{\mathrm{Th}}}
$$

Example 4.9.

Find the Norton equivalent circuit of the circuit in Fig. at terminals $a-b$.

Solution:

To find \boldsymbol{R}_{N}, we set the independent sources equal to zero. See Fig.(a). Thus,

$$
R_{N}=5 \|(8+4+8)=\frac{20 \times 5}{20+5}=4 \Omega
$$

To find I_{N}, we short-circuit terminals a and b, Fig.(b).
We ignore the $5-\Omega$ resistor because it has been shortcircuited. Applying mesh analysis, we obtain

(a)

$$
i_{1}=2 \mathrm{~A}, 20 i_{2}-4 i_{1}-12=0
$$

From these equations, we obtain

$$
i_{2}=1 \mathrm{~A}=i_{s c}=I_{N}
$$

(b)

Alternatively, we may determine I_{N} from $V_{\mathrm{Th}} / R_{\mathrm{Th}}$. We obtain V_{Th} as the open-circuit voltage across terminals a and b in Fig.(c).
Using mesh analysis, we obtain

$$
\begin{aligned}
& i_{3}=2 \mathrm{~A} \\
& 25 i_{4}-4 i_{3}-12=0 \Rightarrow i_{4}=0.8 \mathrm{~A}
\end{aligned}
$$

(c)
and

$$
v_{o c}=V_{\mathrm{Th}}=5 i_{4}=4 \mathrm{~V}
$$

Hence,

$$
I_{N}=\frac{V_{\mathrm{Th}}}{R_{\mathrm{Th}}}=\frac{4}{4}=1 \mathrm{~A}
$$

Thus, the Norton equivalent circuit is as shown in Fig.

Example 4.10.

Using Norton's theorem, find \boldsymbol{R}_{N} and \boldsymbol{I}_{N} of the circuit in Fig. at terminals $a-b$.
Solution:
To find \boldsymbol{R}_{N}, we set the independent voltage source equal to zero and connect a voltage
 source of $v_{o}=1$ V, Fig.(a).
In Fig.(a), the $4-\Omega$ resistor is short-circuited, so we ignore it.
The $5-\Omega$ resistor, the voltage source, and the dependent current source are all in parallel. Hence, $i_{x}=0$.

At nod a,

$$
\begin{aligned}
& i_{o}=\frac{1 \mathrm{~V}}{5 \Omega}=0.2 \mathrm{~A} \Rightarrow \\
& \hat{R}_{N}=\frac{v_{o}}{i_{o}}=5 \Omega
\end{aligned}
$$

(a)

To find I_{N}, we short-circuit terminals a and b and find the current $i_{s c}$, as in Fig. (b).
Note from this figure that the 4Ω resistor, the $10-\mathrm{V}$ voltage source, the $5-\Omega$ resistor, and the
 dependent current source are all in parallel. Hence,

$$
i_{x}=\frac{10}{4}=2.5 \mathrm{~A}
$$

At nod a, KCL gives

$$
i_{s c}=\frac{10}{5}+2 i_{x}=2+2(2.5)=7 \mathrm{~A}
$$

Thus, $\quad I_{N}=7 \mathrm{~A}$

(b)

4.7 Maximum Power Transfer

- If the entire circuit is replaced by its Thevenin equivalent except for the load, the power delivered to the load is:

$$
p=i^{2} R_{L}=\left(\frac{V_{\mathrm{Th}}}{R_{\mathrm{Th}}+R_{L}}\right)^{2} R_{L} \text {, with } R_{L} \neq R_{\mathrm{Th}}
$$

- Maximum power is transferred to the load when

$$
R_{L}=R_{\mathrm{Th}}
$$

- This is known as the maximum power theorem.
- Hence,

$$
p_{\max }=\frac{V_{\mathrm{Th}}^{2}}{4 R_{\mathrm{Th}}}
$$

Example 4.11.

Find the value of $\boldsymbol{R}_{\boldsymbol{L}}$ for maximum power transfer in the circuit of Fig.
Find the maximum power.
Solution:

To get $\boldsymbol{R}_{\mathrm{Th}}$, we use the circuit in Fig.(a) and obtain

$$
R_{\mathrm{Th}}=2+3+6 \| 12=9 \Omega
$$

To get V_{Th}, we applying mesh analysis to the circuit in Fig.(b).

$$
\begin{aligned}
& -12+18 i_{1}-12 i_{2}=0, \quad i_{2}=-2 \mathrm{~A} \\
& \Rightarrow i_{1}=-2 / 3 \mathrm{~A}
\end{aligned}
$$

Applying KVL around the outer loop to get V_{Th} across terminals $a-b$, we obtain

(b)

$$
-12+6 i_{1}+3 i_{2}+2(0)+V_{\mathrm{Th}}=0 \Rightarrow V_{\mathrm{Th}}=22 \mathrm{~V}
$$

For maximum power transfer, and the maximum power is

$$
R_{L}=R_{T h}=9 \Omega \Rightarrow p_{\max }=\frac{V_{\mathrm{Th}}^{2}}{4 R_{\mathrm{Th}}}=\frac{22^{2}}{2 \times 9}=13.44 \mathrm{~W}
$$

The emdl off chapter 4

